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SUMMARY 
A methodology for the decomposition of the Crouzeix-Raviart finite element into six linear subelements is 
described. The resulting element is shown to satisfy the Brezzi-Babdka compatibility condition. The error 
bounds are also established. A comparison in accuracy between this and the standard Crouzeix-Raviart 
element is presented for driven cavity flows. Other results include the execution time for the DCR element 
and the Crouzeix-Raviart element along with both analytical and numerical integration. It is shown that the 
decomposed element results in shorter execution times with only marginal changes in accuracy. 
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INTRODUCTION 

Several specific features characterize the application of the finite element method for incompress- 
ible fluid flow problems, namely the treatment of the divergence-free constraint for the imposition 
of incompressibility and the selection of compatible approximations for the velocity and the 
pressure. It is well known from variational considerations that the pressure is a Lagrange 
multiplier for the divergence-free constraint, hence its close relation to the velocity. As a conse- 
quence, to ensure reliable computations, the approximation basis of the velocity and the pressure 
cannot be selected independently but must obey the Brezzi-BabuSka compatibility condition.' 
This has given birth to a restricted class of fluid elements.' These elements can be divided into two 
groups, those having a continuous pressure approximation and those having a discontinuous 
pressure approximation. Only the latter group ensures mass conservation at the element level, 
because incompressibility is imposed locally. 
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For two-dimensional problems, second-order elements such as the Q2-P1 quadrilateral ele- 
ment (biquadratic velocity, discontinuous linear pressure) and the Crouzeix-Raviart triangular 
element,j P ;-PI (quadratic velocity plus a bubble at the centroid, discontinuous linear pressure) 
as shown in Figure 1, are among the best elements. 

The Crouzeix-Raviart element being triangular, the terms in the Jacobian matrix expressing 
the geometric transformation from real to reference element are all constant provided that the 
geometric shape functions are linear (subparametric element). This means that analytical integra- 
tion can be used, in principle, instead of Gaussian quadrature for the construction of the 
elementary matrices and vectors, although this may be cumbersome. In contrast, the Q2-P1 
element has linear terms in the Jacobian, which makes the use of analytical integration 
impracticable in general. 

The objective of this paper is to describe a new element for fluid flow. This element is 
a decomposed version of the subparametric Crouzeix-Raviart element (subsequently referred to 
as the decomposed Crouzeix-Raviart or DCR element). In other words, following the idea of 
Bercovier and Pironneau? we propose to use a different mesh for the approximation of the 
velocity and the pressure respectively, so that the pattern for the degrees of freedom is the same as 
that for the classical ,Crouzeix-Raviart element. This new element retains nearly the same 
advantages as the original element but enables the use of analytical integration. We give in the 
following a convergence proof for the DCR element, present the major ideas for its implementa- 
tion as well as some comparison on timings and accuracy with the parent element in the-case of 
a driven cavity flow. 

MATHEMATICAL FORMULATION 

Let us consider the modelling of the creeping flow of a viscous, incompressible fluid in a domain 
Sl with boundary r through the following Stokes equations: 

div ts =f, 
div v = 0, 

Figure 1. The Cromix-Raviart element 
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where 

d = - pa + 2pLj, 

y =+[grad u + (grad u)']. 

(3) 

(4) 

In these equations, u is the velocity, p the pressure,fa body force, 6 the unit tensor and p the 
viscosity. If we take u ~ [ H h ( a ) ] '  and p ~ L i ( i 2 )  with Li(R)=(q~L~(ln);  J,qdx=O) ,  then the 
resolution of this problem is equivalent to considering the following rnin-max problem: 

(5 )  
o€CHd(n)12 P e G m  

This leads to the following weak problem: 

where 

grad u grad $ dR, 

and where (. , .) stands for the standard scalar product in Lz(R), i.e. 

(u, u) = uu d R  

(9) 

The discretization is carried out using the finite'element method. The following discrete 
formulation (Uzawa algorithm) is then readily obtained: 

(1 1) 

(12) 

(13) 

A, yi+ 1 - BTp'= F ,  

A, = A + rBTB, 
pi+l  =p i - rBv i+ l ,  

where Y i + l  and Pi+' denote respectively the velocity and pressure vectors at Uzawa iteration 
i+ 1. A, B and F stand respectively for the diffusion matrix, the divergence matrix and the body 
force vector. Finally, r is the penalty parameter ( r s  1). 

THE DCR ELEMENT 

Presentation 

Consider the Crouzeix-Raviart element in Figure 1. Let us now subdivide this element, simply 
by connecting the node at the centroid to each of the other six nodes in turn. This results in six 
linear microelements of equal area, Z (i= 1,2, . . . ,6), as shown in Figure 2. We keep the degrees 
of freedom in pressure at the centroid of the macroelement. 
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Figure 2. The DCR element 

Theoretical properties 

Let us begin by introducing the following vector spaces: 

v h = ( V h E  [c0(fi)12; V h l T G  [Pi ( T ) I 2 ,  v T E T h ;  D h l T = o } ,  (14) 

Q h = { q h E L g ( f i ) ;  q h I ? - E P i ( T ) ,  V T E T h } ,  (16) 

w , * = { u h E  v,*; b ( u h ,  q h ) = O ,  V q h E Q h } ,  (17) 
where P z  ( T )  = P,(T)  0 rll A2 A3 in area co-ordinates and where t h  stands for a regular family of 
finite elements (for more details of this and the following proof, see e.g. Reference 5 or 6). It 
follows, therefore, that using V,* as the discrete space for the velocity field means approximating 
the quadratic shape functions of the Crouzeix-Raviart element by piecewise linear shape func- 
tions that we denote by { $ i } i = 1 , 7 .  We may now state an approximation result. 

v t = { u h E [ c o ( f i ) ] 2 ;  V h l 7 ' , E [ P 1 ( Z ) I Z ;  v i = l , .  . . ,6, V T E T h ,  T = U i = 1 , 6 T ;  uhlr=o}, (15) 

Theorem 

(i) There exists a constant cc>O independent of h such that 

a ( u h ,  U h ) 2 a I I U h I l : , R ,  v V h E  w,*. 
(ii) There exists a constant fi > 0 independent of h such that 

b ( u h ,  q h )  
Vhe V; 11 uh 11 1.R 
sup ~ > p  11 q h  IIo,n, v q h E  Q h ,  

or equivalently (hereafter referred to as the discrete Brezz-BabuSka condition) 

2 D. b ( v h ,  q h )  inf sup 
qhe Qh uhe V: 11 Oh 11 1.R 11 q h  11 0 ,  R 

Proof. (i) We have a(u, u) 2 a 11 u 1) :,n, V u E [H1 (a)] '. The result follows from Vt c [H1(f2)l2. 
(ii) We first recall a lemma which implies the Brezz-BabuSka condition with B independent 

of h. 
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Lemma 

Let us denote by XI, and MI,  discrete approximations of [H;(JZ)]’ and Li(JZ). Let us assume 
that there exists a linear continuous operator nh: [HA(Q)]’-+Xh and a constant c >O independent 
of h such that V u E [H;(Q)]  2, 

IInhuII1,R<CIIUII 1.R. (22) 
Then the discrete Brezzi-BabuSka condition (16) holds with /l independent of h. . 

It is now clear that to prove (ii) it is sufficient to build such an operator for xh= V,* and 
Mh=Qh. Consequently, for every triangle T E T ~  with vertices ai, 1 < i < 3 ,  we uniquely define 
ZhVlTE v,* by 

Such an operator complies with the lemma. The remainder of the proof is analogous to the one 
for the construction of nh in the case of the Crouzeix-Raviart element. 

The theorem implies that the Stokes problem has a unique solution (Uh, Ph) E V,* x Qh and that 

with c independent of h. Moreover, if q, is uniformly regular and Q is convex, it follows from the 
theory of Lagrangian interpolation in R2 that if (u, p ) ~  [H2(Q) n H,$(Q)]’ x [H1(Q) n L@2)], 
then 

11 Uh-v 11 l,R + 11 Ph-P 11 0 ,  R Gch( 11 u 11 2,R + 11 P 11 1 , d  (27) 

Implementation 

The implementation of this element follows closely that of the Crouzeix-Raviart element. The 
major difference is the addition of the steps to partition the macroelement and the subassembly of 
the microelements back into the macroelement. 

The computation of the integral terms in the variational formulation, when performed on the 
microelements, gives rise to six 6 x 6 microelementary matrices, which must be subassembled in 
the correct fashion to yield the macroelementary 14 x 14 matrix, which in turn is assembled into 
the global matrix (a similar operation is performed for the residual). 

Each microelement is an isoparametric P1 element. Therefore the Jacobian of the geometric 
transformation, which we denote J i ,  and the velocity gradients are constant within each micro- 
element. Consequently, analytical integration of the terms that appear in equations (1 1)-( 13) is 
straightforward. For example, denoting f$k and f$k, k =  1 , .  . . , 3, the shape functions on real 
element and the reference element respectively, itcan be readily seen that analytical integration 
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of the diffusion term 
r 

over microelement T ,  i=  1,. . . , 6, reduces to 

Remark I 

Analytical integration is still possible in the case of the full Navier-Stokes equations. More 
precisely, the linearized inertial terms as they appear in the Newton-Raphson scheme break 
down into a sum of integrals that can be handled analytically. 

Remark 2 

Thus far we have implicitly considered the context of Cartesian co-ordinates. The resolution of 
problems in axisymmetric co-ordinates by means of analytical integration is a little more complex 
owing to the presence of the radius in the underlying formulation, which must be expressed in 
terms of the nodal co-ordinates prior to integration. Nevertheless, this is again relatively 
straightforward and will not be presented here. 

RESULTS AND DISCUSSION 

There are two important factors to consider when examining a prospective element, namely the 
accuracy of the solution and the amount of execution time required to achieve it. Accordingly, we 
considered as a test problem the classical driven cavity, for which no analytical solution exists. 
The domain and boundary conditions are shown in Figure 3. Let us take as a reference solution 

(0 I t :  

u = o  
v =  1 

u - v - 0  

Figure 3. Solution domain and boundary conditions for the driven cavity 
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(uIef, pIef) the one obtained for the finest P2-mesh (h =0.05, 894 elements). The discretization 
errors 11 v-vref 11 o,n and 11 p-pref IIO,n versus the mesh size h are given in Figures 4 and 5 respect- 
ively. We can see from these two plots that for the meshes used, both dements achieve essentially 
the same level of accuracy. 

The second point to consider is the amount of computer time required to solve a given 
problem. For this test we again used the driven cavity problem. Tests were conducted on four 
different mesh sizes, using an Apollo DN 3000 workstation running UNIX under SR 9.5. For 
comparison purposes we used a six-point quadrature formula and also analytical integration on 
the Crouzeix-Raviart element. 

We consider first the execution time requirements for each of the cases, for the resolution of 
the Stokes equations. Timings are given for matrix construction, residual construction and 
overall solution time for the first and second iterations. Figure 6 shows the execution time 
required for the construction of the elementary matrices as a function of the number of elements. 
We see that the construction of the matrix for the DCR element using analytic integration 
requires about 40% of the time required for Gaussian quadrature on the Crouzeix-Raviart 
element. The gain is only marginal when the Crouzeix-Raviart element is used in conjunction 
with analytical integration. We have plotted in Figure 7 the timing for the residual construction. 
Here the trends are quite different. The DCR element requires about 65% of the execution time of 
the Crouzeix-Raviart element with numerical integration, while the gain is still more important 
when one uses analytical integration for the parent element. This may appear surprising at first. 

h 

Figure 4. Graph of 11 u- u, 11 x lo3 versus h 
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Figure 5. Graph of IIp-prer IIo,n x lo-’ versus h 
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Figure 6. Comparison of the execution time required to build the global matrix as a function of the number of elements 
for the two elements, including analytical and numerical integration schemes for the Crouzeix-Raviart element 
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Number of elements 

Figure 7. Execution time required to build the residual as a function of the number of elements for the two elements, 
including analytical and numerical integration schemes for the Crouzeix-Raviart element 

When using analytical integration with the Pz-P1 element, however, one intermediate step 
necessary to build the residual is to build the matrix; indeed the matrix is used as a multiplier of 
the former nodal solutions in the construction process. This results in a quite dramatic increase of 
the computational cost. 

To put these numbers into the context of the overall solution time required to solve the 
problem, we show in Figure 8 the total execution time as a function of the problem size for 
a complete iterative step. For the size of problems considered here, savings in overall execution 
time amount to roughly 2070, irrespective of the integration method used with the original 
Crouzeix-Raviart element. We believe that the gain in performance on a vector computer for very 
large problems might be much higher, since the factoring cost is proportionally less important in 
the overall execution time (the factoring is more vectorizable), although this point was not 
investigated. 

In Figure 9 we have displayed the timing results for two iterations, the first one for which both 
the matrix and the residual are built and the second one for which only the residual is built. Such 
results are typical of those obtained with a modified Newton-Raphson method or for any 
problem in which the matrix is fixed in the iterative process, for instance as in the use of the 
augmented Lagrangian method' for non-Newtonian fluid flow. Again it can be seen that the gain 
is about 20% as in Figure 8 when the DCR element is used. 
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Figure 8. Total execution time required for one problem iteration 
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Figure 9. Total execution t h e  required for two problem iterations 
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CONCLUDING REMARKS 

A new element based on a decomposition of the subparametric Crow&-Raviart element into six 
linear triangles has been presented. We have seen that the DCR element combined with analytic 
integration can offer significant savings in execution time over the use of the Crouzeix-Raviart 
element with Gaussian quadrature or even analytic integration, without significant loss in 
accuracy. Furthermore, its implementation in a standard finite element programme is straight- 
forward. In view of the increasing size of problems being solved by the finite element method, we 
believe that this element can be useful to many FEM practitioners. 
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